• 2019-10
  • 2019-11
  • 2020-03
  • 2020-07
  • 2020-08
  • 2021-03
  • br Jong RA Yaffe MJ Skarpathiotakis


    [10] Jong RA, Yaffe MJ, Skarpathiotakis M, Shumak RS, Danjoux NM, Gunesekara A, et al. Contrast-enhanced digital mammography: initial clinical experience. Radiology 2003;228(3):842e50.
    [11] Fallenberg EM, Schmitzberger FF, Amer H, Ingold-Heppner B, Balleyguier C, Diekmann F, et al. Contrast-enhanced spectral mammography vs. mammog-raphy and MRI e clinical performance in 56-85-9 multi-reader evaluation. Eur Radiol 2017;27(7):2752e64.
    [13] Feig S. Cost-effectiveness of mammography, MRI, and ultrasonography for breast cancer screening. Radiol Clin 2010;48(5):879e91. [14] Snipstad S, Berg S, Morch Y, Bjorkoy A, Sulheim E, Hansen R, et al. Ultrasound improves the delivery and therapeutic effect of nanoparticle-stabilized microbubbles in breast cancer xenografts. Ultrasound Med Biol 2017;43(11):2651e69.
    [15] Kriege M, Brekelmans CT, Boetes C, Besnard PE, Zonderland HM, Obdeijn IM, et al. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med 2004;351(5): 427e37.
    [16] Kuhl CK, Schrading S, Strobel K, Schild HH, Hilgers RD, Bieling HB. Abbreviated breast magnetic resonance imaging (MRI): first postcontrast subtracted im-ages and maximum-intensity projection-a novel approach to breast cancer screening with MRI. J Clin Oncol : Off J Am Soc Clin Oncol 2014;32(22): 2304e10.
    [17] Partridge SC, Nissan N, Rahbar H, Kitsch AE, Sigmund EEJJomri. Diffusion-weighted breast MRI: clinical applications and emerging techniques 2017;45(2):337e55.
    [20] Kooi T, Litjens G, van Ginneken B, Gubern-Merida A, Sanchez CI, Mann R, et al. Large scale deep learning for computer aided detection of mammographic
    [21] Rodriguez-Ruiz A, Lang K, Gubern-Merida A, Broeders M, Gennaro G, Clauser P, et al. Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists. J Natl Cancer Inst 2019 Mar 5. pii: djy222. [Epub ahead of print].
    [22] Houssami N, Lee CI, Buist DSM, Tao D. 56-85-9 Artificial intelligence for breast cancer screening: opportunity or hype? Breast (Edinburgh, Scotland) 2017;36:31e3. [23] Kallenberg M, Petersen K, Nielsen M, Ng AY, Pengfei D, Igel C, et al. Unsu-pervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans Med Imaging 2016;35(5):1322e31.
    [24] Strand F, Liu Y, Smith K, Azizpour H, Dembrower K, Lindholm P. A deep-learning breast cancer risk prediction network: trained on the population-based Swedish CSAW data. Chicago: RSNA; 2018. 11/28/2018. [25] Valdora F, Houssami N, Rossi F, Calabrese M, Tagliafico AS. Rapid review: radiomics and breast cancer. Breast Canc Res Treat 2018;169:217e29. [26] Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 2017;14:749e62.
    [27] Gonzalez V, Sandelin K, Karlsson A, Aberg W, Lofgren L, Iliescu G, et al. Pre-operative MRI of the breast (POMB) influences primary treatment in breast cancer: a prospective, randomized, multicenter study. World J Surg 2014;38(7):1685e93.
    [28] Gervais MK, Maki E, Schiller DE, Crystal P, McCready DR. Preoperative MRI of the breast and ipsilateral breast tumor recurrence: long-term follow up. J Surg Oncol 2017;115(3):231e7.  [29] Houssami N, Turner R, Macaskill P, Turnbull LW, McCready DR, Tuttle TM, et al. An individual person data meta-analysis of preoperative magnetic resonance imaging and breast cancer recurrence. J Clin Oncol : Off J Am Soc Clin Oncol 2014;32(5):392e401.
    [30] Fancellu A, Turner RM, Dixon JM, Pinna A, Cottu P, Houssami N. Meta-analysis of the effect of preoperative breast MRI on the surgical management of ductal carcinoma in situ. Br J Surg 2015;102(8):883e93.
    [31] Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans V, et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005;366(9503):2087e106.
    [33] Graham LJ, Shupe MP, Schneble EJ, Flynt FL, Clemenshaw MN, Kirkpatrick AD, et al. Current approaches and challenges in monitoring treatment responses in breast cancer. J Cancer 2014;5(1):58. [34] Hylton NM, Gatsonis CA, Rosen MA, Lehman CD, Newitt DC, Partridge SC, et al. Neoadjuvant chemotherapy for breast cancer: functional tumor volume by MR imaging predicts recurrence-free survivaldresults from the ACRIN 6657/ CALGB 150007 I-SPY 1 TRIAL. Radiology 2015;279(1):44e55. [35] Sorensen J, Velikyan I, Sandberg D, Wennborg A, Feldwisch J, Tolmachev V, et al. Measuring HER2-receptor expression in metastatic breast cancer using [68Ga]ABY-025 affibody PET/CT. Theranostics 2016;6(2):262e71.